Metabolism of D-glycero-D-manno-heptitol, volemitol, in polyanthus. Discovery Of a novel ketose reductase1
نویسندگان
چکیده
Volemitol (D-glycero-D-manno-heptitol, alpha-sedoheptitol) is an unusual seven-carbon sugar alcohol that fulfills several important physiological functions in certain species of the genus Primula. Using the horticultural hybrid polyanthus (Primula x polyantha) as our model plant, we found that volemitol is the major nonstructural carbohydrate in leaves of all stages of development, with concentrations of up to 50 mg/g fresh weight in source leaves (about 25% of the dry weight), followed by sedoheptulose (D-altro-2-heptulose, 36 mg/g fresh weight), and sucrose (4 mg/g fresh weight). Volemitol was shown by the ethylenediaminetetraacetate-exudation technique to be a prominent phloem-mobile carbohydrate. It accounted for about 24% (mol/mol) of the phloem sap carbohydrates, surpassed only by sucrose (63%). Preliminary 14CO2 pulse-chase radiolabeling experiments showed that volemitol was a major photosynthetic product, preceded by the structurally related ketose sedoheptulose. Finally, we present evidence for a novel NADPH-dependent ketose reductase, tentatively called sedoheptulose reductase, in volemitol-containing Primula species, and propose it as responsible for the biosynthesis of volemitol in planta. Using enzyme extracts from polyanthus leaves, we determined that sedoheptulose reductase has a pH optimum between 7.0 and 8.0, a very high substrate specificity, and displays saturable concentration dependence for both sedoheptulose (apparent Km = 21 mM) and NADPH (apparent Km = 0.4 mM). Our results suggest that volemitol is important in certain Primula species as a photosynthetic product, phloem translocate, and storage carbohydrate.
منابع مشابه
The crystal structure of the Y140F mutant of ADP-l-glycero-d-manno-heptose 6-epimerase bound to ADP-β-d-mannose suggests a one base mechanism
Bacteria synthesize a wide array of unusual carbohydrate molecules, which they use in a variety of ways. The carbohydrate L-glycero-D-manno-heptose is an important component of lipopolysaccharide and is synthesized in a complex series of enzymatic steps. One step involves the epimerization at the C6'' position converting ADP-D-glycero-D-manno-heptose into ADP-L-glycero-D-manno-heptose. The enzy...
متن کاملTowards the synthesis of a Yersinia pestis cell wall polysaccharide: enantioselective synthesis of an L-glycero-D-manno-heptose building block.
A short and enantioselective de novo synthesis of an L-glycero-D-manno-heptose building block for the total synthesis of a Yersinia pestis cell wall polysaccharide is described.
متن کاملLarge-Scale Synthesis of Crystalline 1,2,3,4,6,7-Hexa-O-acetyl-l-glycero-α-d-manno-heptopyranose
The higher-carbon sugar l-glycero-d-manno-heptose is a major constituent of the inner core region of the lipopolysaccharide (LPS) of many Gram-negative bacteria. All preparative routes used to date require multiple steps, and scalability has been rarely addressed. Here a highly practical synthesis of crystalline 1,2,3,4,6,7-hexa-O-acetyl-l-glycero-α-d-manno-heptopyranose by a simple four-step s...
متن کاملIdentification of a D-glycero-D-manno-heptosyltransferase gene from Helicobacter pylori.
We have identified a Helicobacter pylori d-glycero-d-manno-heptosyltransferase gene, HP0479, which is involved in the biosynthesis of the outer core region of H. pylori lipopolysaccharide (LPS). Insertional inactivation of HP0479 resulted in formation of a truncated LPS molecule lacking an alpha-1,6-glucan-, dd-heptose-containing outer core region and O-chain polysaccharide. Detailed structural...
متن کاملThe rfaE gene from Escherichia coli encodes a bifunctional protein involved in biosynthesis of the lipopolysaccharide core precursor ADP-L-glycero-D-manno-heptose.
The intermediate steps in the biosynthesis of the ADP-L-glycero-D-manno-heptose precursor of inner core lipopolysaccharide (LPS) are not yet elucidated. We isolated a mini-Tn10 insertion that confers a heptoseless LPS phenotype in the chromosome of Escherichia coli K-12. The mutation was in a gene homologous to the previously reported rfaE gene from Haemophilus influenzae. The E. coli rfaE gene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 119 1 شماره
صفحات -
تاریخ انتشار 1999